Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation.
نویسندگان
چکیده
Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: 1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and 2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment.
منابع مشابه
Inhibition of atrial natriuretic peptide-induced cyclic GMP accumulation in the bovine endothelial cells with anti-atrial natriuretic peptide receptor antiserum.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was det...
متن کاملCrystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction.
A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracell...
متن کاملCrystal Structure of Hormone-bound Atrial Natriuretic Peptide Receptor Extracellular Domain
A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracell...
متن کاملDomain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation.
In the human genome, sequence analysis indicates there are five functional transmembrane guanylyl cyclases, enzymes that synthesize the intracellular second messenger, cGMP. Two, GC-A and GC-B or NPR-A and NPR-B, are widely distributed receptors for atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide, more commonly known as ANP, BNP and CNP, respectively. One cy...
متن کاملPossible identification of novel natriuretic peptide receptor phosphorylation sites by alanine/glutamate mutagenesis
Background Natriuretic peptide receptors A (NPR-A) and B (NPR-B) are transmembrane guanylyl cyclases that regulate blood pressure, heart size and long bone growth. Unlike most cell surface receptors that are desensitized by direct phosphorylation, phosphorylation of natriuretic peptide receptors is essential for activation, and dephosphorylation causes their desensitization. While there are six...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 266 13 شماره
صفحات -
تاریخ انتشار 1991